Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn
نویسندگان
چکیده
Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to (60)Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.
منابع مشابه
Ghrelin Therapy Improves Survival after Whole-Body Ionizing Irradiation or Combined with Burn or Wound: Amelioration of Leukocytopenia, Thrombocytopenia, Splenomegaly, and Bone Marrow Injury
Exposure to ionizing radiation alone (RI) or combined with traumatic tissue injury (CI) is a crucial life-threatening factor in nuclear and radiological events. In our laboratory, mice exposed to (60)Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral) followed by 15% total-body-surface-area skin wounds (R-W CI) or burns (R-B CI) experienced an increment of ≥18% higher mortality over a 30-day ...
متن کاملGhrelin Therapy Decreases Incidents of Intracranial Hemorrhage in Mice after Whole-Body Ionizing Irradiation Combined with Burn Trauma
Nuclear industrial accidents and the detonation of nuclear devices cause a variety of damaging factors which, when their impacts are combined, produce complicated injuries challenging for medical treatment. Thus, trauma following acute ionizing irradiation (IR) can deteriorate the IR-induced secondary reactive metabolic and inflammatory impacts to dose-limiting tissues, such as bone marrow/lymp...
متن کاملThrombopoietin Receptor Agonist Mitigates Hematopoietic Radiation Syndrome and Improves Survival after Whole-Body Ionizing Irradiation Followed by Wound Trauma
Ionizing radiation combined with trauma tissue injury (combined injury, CI) results in greater mortality and H-ARS than radiation alone (radiation injury, RI), which includes thrombocytopenia. The aim of this study was to determine whether increases in numbers of thrombocytes would improve survival and mitigate H-ARS after CI. We observed in mice that WBC and platelets remained very low in surv...
متن کاملOK-432 reduces mortality and bacterial translocation in irradiated and granulocyte-colony stimulating factor (G-CSF)-treated mice.
Bacterial translocation/Acute radiation syndrome/Endotoxin/G-CSF/OK-432 Acute radiation induces bacterial translocation from the gut, followed by systemic infection and sepsis. In order to reduce the mortality after acute whole body irradiation, it is essential to control bacterial translocation. In this study, we established a bacterial translocation assay as a sensitive method to detect minor...
متن کاملMitigation of ionizing radiation-induced bone marrow suppression by p38 inhibition and G-CSF administration.
p38 mitogen-activated protein kinases (p38) has been shown to be activated in hematopoietic stem and progenitors cells after exposure to ionizing radiation (IR) and its activation has been implicated in bone marrow (BM) suppression under various pathological conditions. Therefore, in the present study we investigated whether inhibition of p38 activity alone with SB203580 (SB, a specific p38 inh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014